1,421 research outputs found

    A Worst Practices Guide to Insider Threats: Lessons from Past Mistakes

    Get PDF
    Insider threats are perhaps the most serious challenges that nuclear security systems face. All of the cases of theft of nuclear materials where the circumstances of the theft are known were perpetrated either by insiders or with the help of insiders; given that the other cases involve bulk material stolen covertly without anyone being aware the material was missing, there is every reason to believe that they were perpetrated by insiders as well. Similarly, disgruntled workers from inside nuclear facilities have perpetrated many of the known incidents of nuclear sabotage. The most recent example of which we are aware is the apparent insider sabotage of a diesel generator at the San Onofre nuclear plant in the United States in 2012; the most spectacular was an incident three decades ago in which an insider placed explosives directly on the steel pressure vessel head of a nuclear reactor and then detonated them.While many such incidents, including the two just mentioned, appear to have been intended to send a message to management, not to spread radioactivity, they highlight the immense dangers that could arise from insiders with more malevolent intent. As it turns out, insiders perpetrate a large fraction of thefts from heavily guarded non-nuclear facilities as well. Yet organizations often find it difficult to understandand protect against insider threats. Why is this the case?Part of the answer is that there are deep organizational and cognitive biases that lead managers to downplay the threats insiders pose to their nuclear facilities and operations. But another part of the answer is that those managing nuclear security often have limited information about incidents that have happened in other countries or in other industries, and the lessons that might be learned from them.The IAEA and the World Institute for Nuclear Security (WINS) produce"best practices" guides as a way of disseminating ideas and procedures that have been identified as leading to improved security. Both have produced guides on protecting against insider threats.5 But sometimes mistakes are even moreinstructive than successes.Here, we are presenting a kind of "worst practices" guide of serious mistakes made in the past regarding insider threats. While each situation is unique, and serious insider problems are relatively rare, the incidents we describe reflect issues that exist in many contexts and that every nuclear security manager should consider. Common organizational practices -- such as prioritizing production over security, failure to share information across subunits, inadequate rules or inappropriate waiving of rules, exaggerated faith in group loyalty, and excessive focus on external threats -- can be seen in many past failures to protect against insider threats

    Evaporation of ice in planetary atmospheres: Ice-covered rivers on Mars

    Get PDF
    The evaporation rate of water ice on the surface of a planet with an atmosphere involves an equilibrium between solar heating and radiative and evaporative cooling of the ice layer. The thickness of the ice is governed principally by the solar flux which penetrates the ice layer and then is conducted back to the surface. Evaporation from the surface is governed by wind and free convection. In the absence of wind, eddy diffusion is caused by the lower density of water vapor in comparison to the density of the Martian atmosphere. For mean martian insolations, the evaporation rate above the ice is approximately 10 to the minus 8th power gm/sq cm/s. Evaporation rates are calculated for a wide range of frictional velocities, atmospheric pressures, and insolations and it seems clear that at least some subset of observed Martian channels may have formed as ice-chocked rivers. Typical equilibrium thicknesses of such ice covers are approximately 10m to 30 m; typical surface temperatures are 210 to 235 K

    Sinks in Acyclic Orientations of Graphs

    Full text link
    Greene and Zaslavsky proved that the number of acyclic orientations of a graph with a unique sink is, up to sign, the linear coefficient of the chromatic polynomial. We give three new proofs of this result using pure induction, noncommutative symmetric functions, and an algorithmic bijection.Comment: 17 pages, 1 figur

    Counting (3+1) - Avoiding permutations

    Get PDF
    A poset is {\it (\3+\1)-free} if it contains no induced subposet isomorphic to the disjoint union of a 3-element chain and a 1-element chain. These posets are of interest because of their connection with interval orders and their appearance in the (\3+\1)-free Conjecture of Stanley and Stembridge. The dimension 2 posets PP are exactly the ones which have an associated permutation π\pi where iji\prec j in PP if and only if i<ji<j as integers and ii comes before jj in the one-line notation of π\pi. So we say that a permutation π\pi is {\it (\3+\1)-free} or {\it (\3+\1)-avoiding} if its poset is (\3+\1)-free. This is equivalent to π\pi avoiding the permutations 2341 and 4123 in the language of pattern avoidance. We give a complete structural characterization of such permutations. This permits us to find their generating function.Comment: 17 page

    The global sulfur cycle

    Get PDF
    The results of the planetary biology microbial ecology's 1984 Summer Research Program, which examined various aspects of the global sulfur cycle are summarized. Ways in which sulfur flows through the many living and chemical species that inhabit the surface of the Earth were investigated. Major topics studied include: (1) sulfur cycling and metabolism of phototropic and filamentous sulfur bacteria; (2) sulfur reduction in sediments of marine and evaporite environments; (3) recent cyanobacterial mats; (4) microanalysis of community metabolism in proximity to the photic zone in potential stromatolites; and (5) formation and activity of microbial biofilms on metal sulfides and other mineral surfaces. Relationships between the global sulfur cycle and the understanding of the early evolution of the Earth and biosphere and current processes that affect global habitability are stressed

    Goethite on Mars - A laboratory study of physically and chemically bound water in ferric oxides

    Get PDF
    Thermogravimetric study of physically and chemically bound water in ferric oxides of limonite with application to goethite on Mar

    A search for life on earth at 100 meter resolution

    Get PDF
    A study of several thousand photos indicated approximately 1% of Gemini and Apollo photographs of the earth at 100 m resolution revealed signs of life; rectangular arrays due to human agricultural and urban territoriality, roads, canals, jet contrails, and industrial pollution. Potential false positives such as dunes, sand bars, and jet stream clouds abound. A curve was derived for the detectivity of contemporary life on earth, in a plot of ground resolution versus global coverage. A comparable biology on Mars would not have been detected by all observations of Mars through Mariner 7. Forthcoming Mars orbiter and lander imaging experiments hold significant promise of detecting life on Mars of contemporary terrestrial extent and advancement, should such life exist
    corecore